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Based on the orbital angular momentum and pulse position modulation, we present a novel passive measure-

ment-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with 

the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis 

on the scheme with heralded single-photon source. The numerical simulations show that the performance of our 

scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmis-

sion distance, since the application of orbital angular momentum and pulse position modulation can exclude the ba-

sis-dependent flaw and increase the information content for each single photon. Moreover, the performance is im-

proved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side 

channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups. 
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As an essential branch of quantum information, quantum 
key distribution (QKD)[1] has attracted considerable atten-
tion[2-4]. The unconditional security of QKD has been rig-
orously proved in theory[5], while there are conflictions 
between the theoretical proof and realistic setups. Specifi-
cally, imperfect physical devices, especially the detectors, 
introduce plenty of security loopholes in QKD system. To 
solve these conflictions, one countermeasure is a decoy 
state method[6] that can remove the photon number split-
ting (PNS) attack[7] caused by the non-ideal single photon 
source. The other is a measurement-device-independent 
quantum key distribution (MDI-QKD)[8] which can over-
come all side channel attacks resulting from non-ideal 
detectors. In fact, MDI-QKD is generally integrated with 
the decoy state method to obtain more secure and efficient 
keys. Moreover, the active decoy state method introduces 
the side channel and leaks the information to eavesdrop-
pers, while the passive decoy state method can solve these 
problems[9]. 

The studies show that the beam has two angular mo-
mentums, one is the spin angular momentum (SAM) 
generated by the polarization characteristic of the beam, 
and the other is the orbital angular momentum (OAM) 
produced by the helical phase structure of the beam. As 
for the setups of MDI-QKD, polarization coding[8] and 
phase coding[10] are two major coding methods, which 
are based on the SAM of photon to encode information. 
However, they suffer from the basis-dependent flaw[10] 

during the preparation and measurement of photons. 
Both users need to detect and adjust the reference system 
in real time, which brings adverse effect on the key gen-
eration rate. Luckily, Gibson[11] demonstrated the feasi-
bility of OAM as an information carrier in quantum 
communication. Su[12] and Boyd[13] respectively achieved 
quantum cryptography by applying OAM and verified 
that OAM coding can exclude the basis-dependent flaw. 

In addition, the weak coherent source (WCS) and the 
heralded single-photon source (HSPS)[14] are often used 
in the MDI-QKD setups. However, their single-photon 
pulse ratios are very low, which cause the poor key gen-
eration rate. Fortunately, pulse position modulation 
(PPM)[15] can modulate each pulse into a certain time slot 
within a PPM frame, thus increasing the information 
content carried by a single-photon pulse. 

In this paper, on the basis of OAM coding and PPM 
technology, we put forward a novel passive MDI-QKD 
scheme with the two-mode source, called 
PPM-OAM-MDI-QKD. Besides, with the HSPS, we 
give the lower bound of the yield of single-photon pairs 
and the upper bound of the error rate of single-photon 
pairs as well as the modified formula of key generation 
rate. Furthermore, we numerically study the performance 
of this scheme.  

Usually, OAM is described by the Laguerre-Gaussian 
(LG) mode, the OAM state is recorded as l , and the 
topological value in the azimuth phase exp(ilα) is l. As 
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for PPM, if the n-bit information is denoted as 
m=(m1,m2,…,mn), the frame length is M=2n (i.e., the total 
number of slots). The slot position of the modulation 
pulse is written as L, and then the mapping coding rela-
tionship of PPM is  

2 1

1 2 32 2 2 ,n
nL m m m m−= + + + +  

     { }0,1, , 1 .nm n∈ −                      (1) 
Compared with a single photon just carrying one bit 

information in traditional MDI-QKD, the pulse carries 
log2M bits of information when the frame length of PPM 
signal is M, which greatly increases the information car-
ried by the single photon. 

The system model for PPM-OAM-MDI-QKD is dis-
played in Fig.1. Based on the traditional MDI-QKD, our 
scheme adopts the two-mode source where one mode is 
the signal state, while the other is the trigger state. Alice 
and Bob execute OAM coding and PPM modulation on 
the signal states emitted by themselves, respectively. 
Then, the signal states are sent into the third party (Char-
lie) simultaneously to complete the separation and detec-
tion for extracting the secure key. The trigger state at 
Alice or Bob side is detected by local detector to predict 
the arrival of the signal state. According to the clicking 
and non-clicking events, the signal state is divided into 
two sets for parameter estimation and key extraction. 

 

 

Fig.1 The model of PPM-OAM-MDI-QKD scheme 
 
Our scheme combines OAM coding with PPM modu-

lation coding to replace the normal polarization or phase 
coding, which is the essential difference form the tradi-
tional MDI-QKD. The implementation process of 
PPM-OAM-MDI-QKD is decomposed into four steps. 

Step : Alice and Bob employ the OAM stateⅠ s to de-
sign two sets of unbiased bases, which are 

{ }1 ,B l l= − and ( ) ( ){ }2 / 2, / 2B l l l l= + − − − . 

Alice (Bob) emits the two-mode source with the intensity 
μ. The trigger state is detected by the local detector to 
obtain two types of detection results. Meanwhile, the 
signal state is sent into the spatial light modulator (SLM) 
to prepare OAM states with different values of l, and 
then encoded in the base randomly chosen from the or-
thogonal bases B1 and B2. 

Step Ⅱ: The encoded OAM states with different values 
of l are transmitted to the PPM modulator to produce 
PPM frames. For each PPM frame, only one particular 
time slot is occupied by a pulse, while the others are 
empty pulses without carrying information. 

Step Ⅲ: Alice and Bob send the prepared PPM frames 

to Charlie. Then, Charlie performs the Bell-state meas-
urements on the corresponding time slots of the two PPM 
frames synchronously. If the pulses are detected in the 
same slot of the two frames separately, the next meas-
urement is continued. Instead, if not detected in a certain 
time slot, the slot is not measured. Note that the efficient 
OAM sorter is necessary to split the OAM states during 
Charlie’s measurement process. Additionally, all of Char-
lie’s detection results are recorded and divided into two 
types, the triggered and the untriggered events, depending 
on the clicking and non-clicking events of the trigger 
states at Alice and Bob sides. 

Step Ⅳ: Repeat the above procedures to complete the 
measurements for all PPM frames, and the measurement 
results are published by Charlie. Alice and Bob determine 
whether the measurement results are correct. If incorrect, 
discard the data. Otherwise, if correct, temporarily retain 
this data and compare each base chosen by Alice and Bob 
individually. Afterwards, the data in the same base is kept 
and the corresponding bit flipping is conducted. After 
achieving these operations, this set of data is used as the 
raw key. Finally, the raw key is post-processed on the 
classic channel to obtain the final secure key. 

In order to describe our scheme more clearly, we take 
five PPM frames and frame length of M=4 to illustrate 
how to prepare and encode quantum state of the sender, 
as shown in Tab.1. 

 
Tab.1 4-PPM-OAM-MDI-QKD example 

Parameter Values 

Random num-

bers 
1 0 1 0 0 

l  values 1 2 3 4 5 

Base selection B1 B2 B1 B1 B2 

OAM coding 1−  
2 2

2

+ −
 3−  4  

5 5

2

+ −

PPM coding 01 00 10 00 11 

Slot position 2 slot 0 slot 1 slot 0 slot 3 slot 
  
In summary, the PPM-OAM-MDI-QKD scheme 

eliminates the basis-dependent flaw in MDI-QKD system 
by OAM coding. Besides, exploiting PPM technology, 
the scheme increases the information carried by the sin-
gle photon to further improve the system performance. 
Furthermore, the passive decoy-state method with the 
two-mode source is used in our scheme to avoid the 
source side channel and solve the PNS attack.  

Afterwards, we analyze the performance of this 
scheme with HSPS that is generated by the parametric 
down-conversion (PDC) process. HSPS has a two-mode 
state with identical characteristics, written as 

TS T S
0

| ,n
n

P n nΨ
∞

=

 =                        (2) 

where | n  denotes the n-photon state and Pn is the 
probability of the photon number distribution. Here, we 
use the Poisson distribution of HSPS to study system 
performance. Thus, we have Pn(μ)=μne-μ/n!, and μ is the 
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average intensity. 
When Alice or Bob emits n-photon state, the probabil-

ity that the signal state is encoded as the PPM frame with 
M time slots is 

( ) ( ) 1

,PPM 0 e .
!

n
M M

n nP MP P M
n

μμμ − −= =          (3) 

The trigger state is sent into the detector at Alice or 
Bob side, and the probability of the local detector click-
ing is  

( )( )
0

1 1 1 ,   1

,   0.

n

n v v

v

q d n
q d n

η = − − − ≥


= =
               (4) 

Assuming the detectors at Alice and Bob sides are 
identical, vd  and vη  represent their dark count rate 

and detection efficiency, respectively. The probability of 
the local detector not clicking is ( )1 nq− . 

According to the clicking and non-clicking results of 
the local detector at Alice (Bob) side, the signal pulse is 
divided into two types, triggered event nt

μρ  and untrig-

gered event t
μρ , whose density operators are 

( ),PPM= ,nt t
n n nn n

c n n q P n nμρ μ=        (5) 

( ) ( ),PPM= 1 .t nt
n n nn n

c n n q P n nμρ μ= −    (6) 

The corresponding photon number distributions are 

( )( ),PPM A AP 1 1 1 e ,
!

n
nnt M

n n nc q M d
n

μμη − = = − − −    (7) 

( ) ( )( ),PPM A A1 P 1 1 e ,
!

n
nt M

n n nc q M d
n

μμη −= − = − −   (8) 

where c=a, b. 
Thus, the triggered and untriggered events are used to 

describe the decoy state nt and the signal state t, sepa-
rately. Eqs.(7) and (8) also represent the photon number 
distributions of signal state and decoy state, respectively. 

When Alice and Bob transmit the signal state or decoy 
state in B1 or B2 base, the total gains and error rate can be 
expressed as 

,
, 0

,    , , ,w l r w
l r j k jk

j k

S a b Y l r t nt
≥

= =                  (9) 

, ,
, 0

,    , , ,w w l r w w
l r l r j k jk jk

j k

E S a b e Y l r t nt
≥

= =             (10) 

where 1 2 or w B B= , w
jkY  and w

jke  denote the yield and 
error rate when the j-photon from Alice and the k-photon 
from Bob select the w  base. According to the estima-
tion method in Ref.[16], we can give the lower bound of 
the yield of single-photon pairs 11Y  and the upper bound 
of the error rate of single-photon pairs 11e . 

Since Eqs.(9) and (10) are independent of base selec-
tion, the superscript w is omitted during subsequent cal-
culation. Eq.(9) is transformed as 

, 0 0 00 0 0 0 0 1 1 11
1 1

l r l r r l l r
l r k k j j

k j

S a b Y a b Y b a Y a b Y
∞ ∞

= =

= + + + +    

1 1 1 1
2 2 , 2

,   , , .l r r l l r
k k j j j k jk

k j j k

a b Y b a Y a b Y l r t nt
∞ ∞ ∞

= = =

+ + =      (11) 

Thus, we get 

( )( )
( ) ( )

( ) ( )

0 0 , 0 0 , 0 0 , 0 0 ,

0 1 0 1 0 1 0 1 11

0 1 0 1 0 0 1
2

0 1 0 1 0 0 1
2

+

nt nt t nt nt t t t
t t nt t t nt nt nt

nt t t nt nt t t nt

nt t t nt nt t t nt
k k k

k

nt t t nt nt t t nt
j j j

j

a b S a b S a b S a b S

a a a a b b b b Y

a a a a b b b b Y

b b b b a a a a Y

∞

=

∞

=

− − + =

− − +

− −

− − +





  

( ) ( )0 0 0 0
, 2

.nt t t nt nt t t nt
j j k k jk

j k

a a a a b b b b Y
∞

=

− −             (12) 

It is easy to prove that 0nt t t nt
j k j kc c c c− ≥ is correct 

when j k≤ , then 

0 0 0 2 0 2

0 0 0 2 0 2

,     2, , .
nt t t nt nt t t nt

j j

nt nt t t nt nt t t
j j

c c c c c c c c
j c a b

c c c c c c c c
− −

≥ ≥ =
+ +

     (13) 

Therefore, Eq.(12) can be rewritten as 

( )( )
( ) ( )

( ) ( )

( )

0 0 , 0 0 , 0 0 , 0 0 ,

1 1 0 1 0 1 0 1 0 1 11

1 2 0 1 0 1 0 0 1
2

2 1 0 1 0 1 0 0 1
2

2 2 0 0 0

+

nt nt t nt nt t t t
t t nt t t nt nt nt

nt nt t t nt nt t t

nt nt t t nt nt t t
k k k

k

nt nt t t nt nt t t
j j j

j

nt nt t t nt
j j

a b S a b S a b S a b S

A B a a a a b b b b Y

A B a a a a b b b b Y

A B b b b b a a a a Y

A B a a a a b b

∞

=

∞

=

− − + ≥

+ + +

+ +

+ + +

+





( )

( )( )
( )
( )

0
, 2

1 1 0 1 0 1 0 1 0 1 11

0 0 , 0 0, 0 ,0 0 0 0,0 1 1 11

0 0 , 0 0, 0 ,0 0 0 0,0 1 1 11

0 0 , 0 0, 0 ,0 0

+

+

+

nt t t
k k jk

j k

nt nt t t nt nt t t

t t t t t t t t
t t t t

t nt t nt t nt t nt
t nt nt t

nt t nt t nt
nt t t nt

b b Y

A B a a a a b b b b Y

Ca b S a S b S a b S a b Y

Ca b S a S b S a b S a b Y

Ca b S a S b S a b

∞

=

+ ≥

+ +

− − + −

− − + −

− − +



( )
( )

0 0,0 1 1 11

0 0 , 0 0, 0 ,0 0 0 0,0 1 1 11

+

,

t nt t

nt nt nt nt nt nt nt nt
nt nt nt nt

S a b Y

Ca b S a S b S a b S a b Y

−

− − + −

 

(14) 
where { }1 2 2 1 2 2min , ,C A B A B A B=  and  

0 1 0 1
1

0 1 0 1

,
nt t t nt

nt nt t t

a a a aA
a a a a

−
=

+
    0 2 0 2

2

0 2 0 2

,
nt t t nt

nt nt t t

a a a aA
a a a a

−
=

+
 

0 1 0 1
1

0 1 0 1

,
nt t t nt

nt nt t t

b b b bB
b b b b

−
=

+
    0 2 0 2

2

0 2 0 2

.
nt t t nt

nt nt t t

b b b bB
b b b b

−
=

+
      (15) 

Then, ( )( )( )1 1 0 1 0 1 0 1 0 1 0nt nt t t nt nt t tC A B a a a a b b b b− + + >  is 

always true, thereby deducing the lower bound of 11Y as 

( )( )( )
, , , , , , , ,

1 1

1

0 1 0 1 0 1

1

0 1

t t t t t nt t nt nt t nt t nt nt n

nt nt t t nt

t

n

n

t t t

t

C A B a a a
g S g S g S g S

a b b b
Y

b
+ + +

− +
=

+
+  

( )( )( )
0,0 0,0 ,0 ,0 ,0 ,0

1 1 0 1

0

0 1

, 0,

0 1 0 1

0, 0, ,t t nt nt t t nt

nt nt t t nt n

nt

t t t

g S g S g S g S
C A B a a a a b b b

g S
b

− − − −
− + +

    (16) 

where the corresponding coefficients for total gains are 

0 0, 0 0 ,t t nt
t

nt
t a bg a bC= −     ( ) ( )2 2

00 0, 0 ,t t nt
tg Ca b b + =  

0 0, 0 0 ,t nt nt t
t nt a b aC bg = +    ( ) ( )2 2

0 0 0,0 ,nt t nt
nt a bC bg  + =  

0 0 0, 0 ,nt t t n
nt

t
t a b a bg C +=    ( ) ( )2 2

0 0 00, ,t n
t

t tg Cb a a + =
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0 0 0, 0 ,n n
nt

t t t
nt

ta b aC bg −=   ( ) ( )2 2

0 0 00, ,nt t nt
nt b aC ag  + =  

( ) ( ) ( ) ( )2 2 2 2

0 0 0, 00 0 .t nt t nta a bg bC    + +   =         (17) 

Similarly, according to Eq.(10), the total error rate of 
the system can be rewritten as 

0 0 00 00 1 1 11 11

0 0 0 0 0 0 1 1 1
0 0 2

1 1 1
2 , 2

0 0 00 00 1 1 11 11

0 0

,

0
0

,

0

+

nt nt nt nt

nt nt nt nt nt nt
k k k j j j k k k

k j k

nt nt nt nt
j j j j k jk jk

j j k

nt nt nt nt

nt nt n
k k k

k

nt nt nt nt a b e Y a b e Y

a b e Y b a e Y a b e Y

b a e Y a b e Y

a b e Y a b e Y

a b Y

E S

e b

∞ ∞ ∞

= = =

∞ ∞

= =

∞

=

+ +

+ +

+ ≥

+ +

+

= −

−

  

 

 0 0
0

0 0 0,0 0,0 1 1 11 11 0 0, 0,

t nt
j j j

j

nt nt nt nt nt
nt nt

a e Y

a b E S a b e Y a E S

∞

=

=

+ + +−



  

0 ,0 ,0 .
nt

nt ntb E S                       (18) 

Thus, we can deduce the upper bound of 11e  as 

11

, , 0 0, 0, 0 ,0 ,0 0 0 0,0 0,0

1 1 11

.
nt nt nt nt

nt nt nnt nt nt n t nt
nt nt

t

e
E S a E S b E S a b E S

a b Y
− +

=
−      (19) 

Here, t and nt (the superscript or subscript) respec-
tively represent the signal state and the decoy state pre-
pared by Alice or Bob. The subscript 0 means a vacuum 
state. Since we mostly take advantage of the laser diode 
driven by the electrical pulse to generate the light pulse, 
the vacuum state can be produced by turning off the 
electrical pulse. This process is reasonable and secure. 
Therefore, the signal state and the decoy state used in our 
scheme can be considered to be passively produced, and 
our scheme still belongs to the passive decoy state 
scheme without modulated vulnerabilities. 

At last, we modify the classical formula of key gen-
eration rate given in Ref.[8], and the key generation rate 
of our scheme can be calculated as 

( )1 22 2 2

2 1 11 11log e 1B BR Mq Y H eμμ −  ≥ − −   

( )1 1

, , ,B B
t t t tS fH E                             (20) 

where 1
,
B
t tS  and 1

,
B
t tE  are the total gains and error rate of 

the triggered event in B1 base, which can be measured in 
experiments[17]. ( ) ( ) ( ) ( )2 2 2log 1 log 1H x x x x x= − − − −  

is the binary Shannon function. f is the actual error cor-
rection efficiency. In particular, due to the application of 
PPM technology, a single photon pulse in our scheme 
carries log2M bits of information, which means that the 
yield of the single-photon pairs in B1 base is log2M times 
as the MDI-QKD with traditional coding methods. 

Now, using Eqs.(16), (19) and (20), we numerically 
study the performance of our scheme. We set the pa-
rameters primarily from Ref.[17]: ed=1.5%, f=1.16, 
ηv=0.75, dv=1.0×10-6 and α=0.2 dB/km is the channel 
loss. Because OAM coding solves the basis-dependent 
flaw, the misalignment-error probability in our scheme 
is 0de = . 

The simulation results are presented in Figs.2 and 3, 
where the curves display the traditional passive 
MDI-QKD scheme with polarization coding, the 
OAM-MDI-QKD scheme (without PPM modulation), 
and the PPM-OAM-MDI-QKD schemes with different 
frame lengths of M, such as 2,4,8,16M = . 

 

 
Fig.2 Upper bound of e11 under different MDI-QKD 
schemes 

 
Fig.2 reveals that the upper bound of e11 in the 

OAM-MDI-QKD scheme is clearly below that in the 
traditional MDI-QKD scheme with polarization coding. 
It depends on the rotation invariance of OAM state, 
which can solve the basis-dependent flaw resulting from 
the polarization coding or phase coding to decline the 
error rate. Moreover, adding the PPM technology to 
OAM-MDI-QKD scheme can further decrease the error 
rate. For the PPM-OAM-MDI-QKD schemes, longer 
frame length makes the error rate lower. 

 

 
Fig.3 Key generation rates under different MDI-QKD 
schemes 

 
Fig.3 points out that the performance of OAM-MDI- 

QKD scheme whether in key generation rate or secure 
transmission distance is better than that of traditional 
MDI-QKD scheme with polarization coding. Besides, the 
OAM-MDI-QKD scheme provides a performance com-
parable to the 2-PPM-OAM-MDI-QKD scheme, and they 
have identical maximum transmission distance that is 
273.4 km. Moreover, the PPM-OAM-MDI-QKD schemes 
with different frame lengths exceed the OAM-MDI-QKD 
scheme in performance. As the frame length M of
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PPM-QAM-MDI-QKD increases, the key generation rate 
and secure transmission distance are both improved. For 
example, the maximum transmission distance can reach 
340.2 km when M=16. 

In conclusion, we have proposed a passive decoy-state 
MDI-QKD scheme based on OAM coding and PPM 
technology, called PPM-OAM-MDI-QKD, in which both 
Alice and Bob emit the two-mode source without inten-
sity modulation. Especially, combining with the OAM 
and PPM, our scheme can exclude the basis-dependent 
flaw and increase the information content for the single 
photon. Besides, we have given the lower bound of the 
yield of single-photon pairs and the upper bound of the 
error rate of single-photon pairs to tightly estimate the 
key generation rate. Based on this, we numerically study 
the performance of this scheme with HSPS. The results 
demonstrate that the PPM-OAM-MDI-QKD scheme 
supplies a performance superior to the OAM-MDI-QKD 
scheme and the traditional MDI-QKD. For the 
PPM-OAM-MDI-QKD schemes with different frame 
lengths, longer frame length makes the performance of 
corresponding scheme better. Specifically, when the 
frame length is 2, the maximum secure distance is 
273.4 km that is identical to that of the OAM-MDI-QKD 
scheme. And it can reach 340.2 km when the frame 
length is 16. Therefore, our scheme avoids the source 
side channels and significantly optimizes the system 
performance. It seems promising in the future develop-
ment for MDI-QKD. 
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